Almost all hypergraphs without Fano planes are bipartite
نویسندگان
چکیده
The hypergraph of the Fano plane is the unique 3-uniform hypergraph with 7 triples on 7 vertices in which every pair of vertices is contained in a unique triple. This hypergraph is not 2-colorable, but becomes so on deleting any hyperedge from it. We show that taking uniformly at random a labeled 3-uniform hypergraph H on n vertices not containing the hypergraph of the Fano plane, H turns out to be 2-colorable with probability at least 1 − 2−Ω(n 2). For the proof of this result we will study structural properties of Fano-free
منابع مشابه
On Colourings of Hypergraphs Without Monochromatic Fano Planes
For k-uniform hypergraphs F and H and an integer r ≥ 2, let cr,F (H) denote the number of r-colorings of the set of hyperedges of H with no monochromatic copy of F and let cr,F (n) = maxH∈Hn cr,F (H), where the maximum runs over all k-uniform hypergraphs on n vertices. Moreover, let ex(n, F ) be the usual extremal or Turán function, i.e., the maximum number of hyperedges of an n-vertex k-unifor...
متن کاملQuasi-Random Hypergraphs and Extremal Problems for Hypergraphs
The regularity lemma was originally developed by Szemerédi in the seventies as a tool to resolve a long standing conjecture of Erdős and Turán, that any subset of the integers of positive upper density contains arbitrary long arithmetic progressions. Soon this lemma was recognized as an important tool in extremal graph theory and it also has had applications to additive number theory, discrete ...
متن کاملMatchings in hypergraphs of large minimum degree
It is well known that every bipartite graph with vertex classes of size n whose minimum degree is at least n/2 contains a perfect matching. We prove an analogue of this result for hypergraphs. We also prove several related results which guarantee the existence of almost perfect matchings in r-uniform hypergraphs of large minimum degree. Our bounds on the minimum degree are essentially best poss...
متن کاملNeighborhood hypergraphs of bipartite graphs
Matrix symmetrization and several related problems have an extensive literature, with a recurring ambiguity regarding their complexity status and their relation to graph isomorphism. We present a short survey of these problems to clarify their status. In particular we recall results from the literature showing that matrix symmetrization is in fact NP-hard, while graph isomorphism is still an op...
متن کاملStrong Transversals in Hypergraphs and Double Total Domination in Graphs
Let H be a 3-uniform hypergraph of order n and size m, and let T be a subset of vertices of H. The set T is a strong transversal in H if T contains at least two vertices from every edge of H. The strong transversal number τs(H) of H is the minimum size of a strong transversal in H. We show that 7τs(H) ≤ 4n+ 2m, and we characterize the hypergraphs that achieve equality in this bound. In particul...
متن کامل